Home
Class 12
MATHS
3 pi zquad " 24."a sin((A)/(2)+B)=(b+c)s...

3 pi zquad " 24."a sin((A)/(2)+B)=(b+c)sin(A)/(2)*0

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C= pi and (sin 2 A + sin 2B + sin 2 C)/(sin A + sin B + sin C ) = lamda sin ((A)/(2)) sin ((B)/(2)) sin ((C )/(2)) , then the value of lamda must be

is A+B+C=pi, prove that sin((A)/(2))sin((B)/(2))sin((C)/(2))>=-1

If A+B+C=pi then prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))-1=4sin((pi-A)/(4))sin((pi-B)/(4))sin((pi-C)/(4))

If A+B+C=pi, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))=1+4sin((pi-B)/(4))sin((pi-B)/(4))*sin((pi-C)/(4))

If A+B+C=pi , prove that : sin ((B+C)/(2)) + sin ((C+A)/(2)) + sin( (A+B)/(2) )= 4cos ((pi-A)/(4)) cos( (pi-B)/(4)) cos((pi-C)/(4)) .

If A, B, C are the angles in a triangle then prove that sin .(A)/(2)+ sin . (B)/(2)+ sin .(C)/(2) =1 +4 sin((pi-A)/(4)) sin ((pi-B)/(4)) sin((pi-C)/(4))

If AandB are acute positive angles satisfying the equations 3sin^(2)A+2sin^(2)B=1 and 3sin2A-2sin2B=0, then A+2B is equal to (a) pi (b) (pi)/(2) (c) (pi)/(4) (d) (pi)/(6)

If A+B+C=pi , prove that: "sin" A+"sin" B-"sin" C=4 "sin"(A)/(2)"sin"(B)/(2)"cos"(C)/(2) .

If A + B + C = pi , then show that sin (A + B + C)/( 2) = sin(A / 2) * cos "" (B + C)/( 2) + sin "" (B + C)/( 2) * cos "" (A) / (2)

If A+B+C=pi , prove that : (sin ((B+C)/(2)) + sin ((C+A)/(2)) + sin( (A+B)/(2) )) equals (4cos ((pi-A)/(4)) cos( (pi-B)/(4)) cos((pi-C)/(4))) .