Home
Class 12
MATHS
" If "sin y" ? "x" sin "(a+y)" prove tha...

" If "sin y" ? "x" sin "(a+y)" prove that "(dy)/(dx)=(sin^(2)(a+y))/(sin a)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin y=x sin(a+y), prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If sin y=sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y = x sin (a + y), then prove that (dy)/(dx) = (sin^(2) (a + y))/(sin a) .

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)= (sin^2(a+y))/(sina) .

If y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin(a+y)-y cos(a+y))

If sin y = x sin (a + y) then show that (dy)/(dx)=(sin^2(a+y))/(sina)