Home
Class 12
MATHS
Prove that e^x+sqrt(1+e^(2x))geq(1+x)+sq...

Prove that `e^x+sqrt(1+e^(2x))geq(1+x)+sqrt(2+2x+x^2)AAx in R`

Promotional Banner

Similar Questions

Explore conceptually related problems

intdx/sqrt(1-e^(2x))

Prove that e^(x) ge 1 +x and hence e^(x) +sqrt(1+e^(2x))ge(1+x)+sqrt(2+2x+x^(2)) forall x in R

(v)int e^x(sqrt(1-x^(2))-(x)/(sqrt(1-x^2))dx)

Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x 1

int(e^x(2-x^2))/((1-x)sqrt(1-x^2))dx

Evaluate: int e^(x)sqrt(e^(2x)+1)dx

int(dx)/(sqrt(1-e^(2x)))=?

Prove that: lim_(x rarr oo)x(sqrt(x^(2)+1)-sqrt(x^2-1))) = 1

int(e^(2x))/(sqrt(1-e^(2x)))dx

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx