Home
Class 11
MATHS
" 9.Let "z=e^(i theta)" then the value o...

" 9.Let "z=e^(i theta)" then the value of "sum_(m=1)^(15)Im(z^(2m-1))," when "theta=2^(0)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z=cos theta+i sin theta then the value of sum_(m=1)^(30)Im(z^(2m-1)) at theta=2^(@) is.

Let z=cos theta+isintheta . Then the value of sum_(m-1)^(15)Im(z^(2m)-1) at theta=2^(@) is

Let z=costheta+isintheta . Then the value of sum_(m=1)^15 Im(z^(2m-1)) at theta=2^@ is:

Let z=costheta +i sintheta . Then, the value of sum_(m=1)^15Imz^(2m-1) at theta = 2^@ is

Let z=costheta+isintheta . Then the value of sum_(m->1-15)Img(z^(2m-1)) at theta=2^@ is:

Let z=costheta+isintheta . Then the value of sum_(m->1-15)Img(z^(2m-1)) at theta=2^@ is:

Let z=cos theta+i sin theta. Then the value of sum_(m rarr1-15)Img(z^(2m-1)) at theta=2^(@) is: 1.(1)/(sin2^(@)) 2.(1)/(3sin2^(@))3*(1)/(sin2^(@))4*(1)/(4sin2^(@))

If z=cos theta+i sin theta, then the value of (z^(2n)-1)/(z^(2n)+1)(A)i tan n theta(B)tan n theta(C)i cot n theta(D)-i tan n theta

Let z_(1),z_(2) and z_(3) be three points on |z|=1 . If theta_(1), theta_(2) and theta_(3) be the arguments of z_(1),z_(2),z_(3) respectively, then cos(theta_(1)-theta_(2))+cos(theta_(2)-theta_(3))+cos(theta_(3)-theta_(1))