Home
Class 12
MATHS
Let g(x)=f(logx)+f(2-logx)a n df^(x)<0AA...

Let `g(x)=f(logx)+f(2-logx)a n df^(x)<0AAx in (0,3)dot` Then find the interval in which `g(x)` increases.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=2f(x/2)+f(2-x) and f''(x)<0 , AA x in (0,2) .Then g(x) increasing in

e^(x+2logx)

If f(x)=(log)_x(logx) , then f'(x) at x=e is equal to......

int[f(logx)+f'(logx)]dx=

int[f(logx)+f'(logx)]dx=

y=x^(logx)+(logx)^(x)

∫ (1)/(x.logx.(2+logx))

If f(x)=log(logx)," then "f'(e)=