Home
Class 12
MATHS
Let f, g and h be monic polynomials of d...

Let `f, g and h` be monic polynomials of degree m, n and p respectively, where m, n and p are prime numbers `(m < n < p)`. If `lim_(x->oo)(g(x))/(x^5)=1"and"L=lim_(x->oo)(h(6x))/(f(2x)g(3x))` is non-zero finite, then L is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If find g are polynomials of derrees m and n respectively, and if h(x) = (f^@ g ) (x), then the degree of h is

If f(x) and g(x) are polynomials of degree p and q respectively, then the degree of {f(x) pm g(x)} (if it is non-zero) is

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2r) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The valur of C is:

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2r) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The valur of C is:

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2t) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The value of L . Is :

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2t) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The value of L . Is :

g(x),=x^(c)e^(cx) and f(x)=int_(0)^(x)te^(2t)(1+3t^(2))^((1)/(2))dt* if L,=lim_(x rarr oo)(f'(x))/(g'(x)) is non-zero finit number then :,

If f(x),g(x)a n dh(x) are three polynomials of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l

If f(x),g(x)a n dh(x) are three polynomials of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l