Home
Class 12
MATHS
" If "y=[x+sqrt(x^(2)+1)]^(n)," prove th...

" If "y=[x+sqrt(x^(2)+1)]^(n)," prove that "(x^(2)+1)y_(2)+xy_(1)-n^(2)y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y={x+sqrt(x^(2)+1)}^(m), show that (x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

y = [x + sqrt(x^2 + 1)]^p , prove that (x^2 + 1)y_2 + xy_1 - p^2y = 0

y=[log(x+sqrt(x^(2)+1))]^(2) then prove that (x^(2)+1)y_(2)+xy_(1)=2

If y = (x+ sqrt(x ^(2) -1))^(m) then (x ^(2) -1) y_(2) + xy _(1)=

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y=px^(n)+qx^(-n) , show that x^(2)y_(2)+xy_(1)-n^(2)y=0 .

If quad y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y = sin(mcos^(-1)x) then prove that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0 .