Home
Class 8
MATHS
" G) "(x-5)/(3)=(x-3)/(5)...

" G) "(x-5)/(3)=(x-3)/(5)

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f : RrarrR be defined as f (x)= (3x+4)/(5x-7),(xne7/(5)) and g : RrarrR be defined as g (x) = (7x+4)/(5x-3),(xne3/(5)) show that (g o f) (x) = (f o g) (x).

If quad f=(x)/(1+x^(2))+(1)/(3)((x)/(1+x^(2)))^(3)+(1)/(5)((x)/(1+x^(2)))^(5)+ and g=x-(2)/(3)x^(3)+(1)/(5)x^(5)+(1)/(7)x^(7)-.... then

Let (x)=x+(x^(3))/(3)+(x^(5))/(5)+(x^(7))/(7)+(x^(9))/(9) and let g(x) be the inverse of f(x) then g'''(0) is

Solve for : (5+x)/(5-x)-(5-x)/(5+x)=3 3/4; x!=5,-5

Solve for :(5+x)/(5-x)-(5-x)/(5+x)=3(3)/(4);x!=5,-5

If f:RR -{(7)/(5)} rarr RR-{(3)/(5)} be defined as f(x)=(3x+4)/(5x-7) and g:RR- {(3)/(5)} rarr RR -{(7)/(5)} be defined as g(x)=(7x+4)/(5x-3) .Then find f o g .

If f (x) = (3x + 4)/( 5x -7), g (x) = (7x +4)/(5x -3) then f [g(x)]=

If f (x) = (3x + 4)/( 5x -7), g (x) = (7x +4)/(5x -3) then f [g(x)]=

f'(x)>=g'(x), if f(x)=5-3x+(5)/(2)x^(2)-(x^(3))/(3),g(x)=3x-7