Home
Class 11
MATHS
1+(3)/(2)+(5)/(2^(2))+(7)/(2^(3))+.........

1+(3)/(2)+(5)/(2^(2))+(7)/(2^(3))+......." to "oo

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum to infinity of the series: 1+(3)/(2)+(5)/(2^(2))+(7)/(2^(3))+.........oo

1+(3)/(2)+(5)/(2^(2))+(7)/(2^(3))+....oo is equal to

Find the sum of the infinite series (1.3)/(2)+(3.5)/(2^(2))+(5.7)/(2^(3))+(7.9)/(2^(4))+......oo

1+3/(1!) +5/(2!) + (7)/(3!) + ......oo=

Statement-I : (1)/(1.2)+(1)/(2.2^(2))+(1)/(3.2^(3))+….oo=log_(e )1//2 Statement-II : ((1)/(5)+(1)/(7))+(1)/(3)((1)/(5^(3))+(1)/(7^(3)))+(1)/(5)((1)/(5^(5))+(1)/(7^(5)))+….+oo=(1)/(2)log2 Which of the above is true

Statement-I : (1)/(1.2)+(1)/(2.2^(2))+(1)/(3.2^(3))+….oo=log_(e )1//2 Statement-II : ((1)/(5)+(1)/(7))+(1)/(3)((1)/(5^(3))+(1)/(7^(3)))+(1)/(5)((1)/(5^(5))+(1)/(7^(5)))+….+oo=(1)/(2)log2 Which of the above is true

Find the sum (1^(2))/(2)-(3^(2))/(2^(2))+(5^(2))/(2^(3))-(7^(2))/(2^(4))+...oo

If (1)/(1^(2))+(2)/(2^(2))+(3)/(3^(2))+...oo=(pi^(2))/(6) implies (1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+...oo=(pi^(2))/(k) then k=