Home
Class 11
MATHS
(iv)quad [(3x+y^(2))^(9)]^(4)...

(iv)quad [(3x+y^(2))^(9)]^(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

Find the continued product: (i) (x + 1)(x - 1) (x^(2) + 1) (ii) (x - 3)(x + 3)(x^(2) + 9) (iii) (3x - 2y)(3x + 2y)(9x^(2) + 4y^(2)) (iv) (2p + 3)(2p - 3)(4p^(2) + 9)

{:("Column" A ,, "Column" B), ((3x^(2) - 5)- (2x^(2) - 5 + y^(2)) ,, (a) x^(2) + xy + y^(2)) , (9x^(2) - 16y^(2) ,, (b) 2) , ((x^(3) - y^(3))/(x-y) ,, (c) (9x + 16y) (9x - 16y)) , ("The degree of " (x + 2) (x+3) ,, (d) x^(2) - y^(2)) , (,, (e) 1) , (,, (f) (3x + 4y) (3x - 4y)):}

The HCF of 4y^(4)x-9y^(2)x^(3) and 4y^(2)x^(2)+6yx^(3) is

The solution of the differential equation (dy)/(dx)+(x(x^(2)+3y^(2)))/(y(y^(2)+3x^(2)))=0 is (a) x^(4)+y^(4)+x^(2)y^(2)=c (b) x^(4)+y^(4)+3x^(2)y^(2)=c (c) x^(4)+y^(4)+6x^(2)y^(2)=c (d) x^(4)+y^(4)+9x^(2)y^(2)=c

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

The smaller area bounded by (x^(2))/(16)+(y^(2))/(9)=1 and the line 3x+4y=12 is

Find the shortest distance between the lines (x-6)/(3)=(y-7)/(-1)=(z-4)/(1) and (x)/(-3)=(y-9)/(2)=(z-2)/(4)

Simplify (x+4)/(3x+4y) xx (9x^(2) - 16y^(2))/(2x^(2) +3x-20)