Home
Class 12
MATHS
" 2.Prove that the function "f(x)={[(e^(...

" 2.Prove that the function "f(x)={[(e^(1/x))/(1+e^(1/1)),,x!=0],[0,,x=0]" is discontinuous at "x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the function f(x)=(x)/(1+e^(1//x),x ne 0, f(0)= 0 is continuous at x = 0

Show that the function f(x)={{:((e^(1//x)-1)/(e^(1//x)+1)", when "x!=0),(0", when "x=0):} is discontinuous at x=0 .

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0, at x=0 ,f(x)=0 a. is continuous at x=0 b. is not continuous at x=0 c. is not continuous at x=0, but can be made continuous at x=0 (d) none of these

Prove that the function f(x)={x/(1+e^(1/x)); if x != 0 0; if x=0 is not differentiable at x = 0.

Show that, f(x)= {((e^((1)/(x))-1)/(e^((1)/(x))+1)",",x ne 0),(0",",x=0):} . Is discontinuous at x= 0

Show that the function f(x) given by f(x)={(e^(1/x)-1)/(e^(1/x)+1), when x!=00,quad when x=0 is discontinuous at x=0

Show that the function f(x) given by f(x)={((e^(1/x)-1)/(e^(1/x)+1), when x!=0), (0, when x=0):} is discontinuous at x=0 .

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 \ \ \ \ \ \ \ 0,x=0 at x=0