Home
Class 12
MATHS
Show the condition that the curves a x^2...

Show the condition that the curves `a x^2+b y^2=1` and `a^(prime)x^2+b^(prime)y^2=1` should intersect orthogonally is `1/a-1/b=1/a^(prime)-a/b^(prime)dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If two curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally,then show that (1)/(a)-(1)/(b)=(1)/(a')-(1)/(b')

Find the condition for the two concentric ellipses a_(1)x^(2)+b_(1)y^(2)=1 and a_(2)x^(2)+b_(2)y^(2)=1 to intersect orthogonally.

If the curve ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally, then

Find the condition for the curve (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and xy =c^(2) to interest orthogonally.

The curves ax^(2)+by^(2)=1 and Ax^(2)+B y^(2) =1 intersect orthogonally, then

Prove that the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(x^(2))/(a^(12))+(y^(2))/(b^(2))=1 intersect orthogonally if a^(2)-a^(2)=b^(2)-b^(2)

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1 intersect orthogonally, then

Show tht the curves x^2/(a^2+k_1)+y^2/(b^2+k_1)=1 and x^2/(a^2+k_2)+y^2/(b^2+k_2)=1 intersect

Using determinants prove that the points (a ,\ b),\ (a^(prime),\ b^(prime))a n d\ (a-a^(prime),\ b-b^(prime)) are collinear if a b^(prime)=a^(prime)bdot