Home
Class 12
MATHS
I=int(1)/(e^(x)+1)dx...

I=int(1)/(e^(x)+1)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate I=int_(1)^(e^(2))(dx)/(x(1+logx)^(2))

Ecaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx

Evaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx

Ecaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx

I=int(e^x)/(e^(x)-1)dx

I=int(dx)/(1+e^x) dx is equal to

"I=int(dx)/(1+e^(x))

I=int(dx)/((1+e^(x))(1+e^(-x)))=...

EXAMPLE 3 -Evaluate the following integrals: (i) int(e^(x)-1)/(e^(x)+1)dx(ii)int(5^(x)+1)/(5^(x)-1)dx

If I_(1) = int_e^(e^(2)) (dx)/(log x) and I_(2) = int_1^(2) (e^(x)dx)/(x) then