Home
Class 12
MATHS
x=cos^(-1)(1)/(sqrt(1+t^(2))),y=sin^(-1)...

x=cos^(-1)(1)/(sqrt(1+t^(2))),y=sin^(-1)(t)/(sqrt(1+t^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when x=cos^(-1)(1)/(sqrt(1+t^(2))) and y=sin^(-1)(t)/(sqrt(1+t^(2))),t in R

Find (dy)/(dx), when x=(cos^(-1)1)/(sqrt(1+t^(2))) and y=(sin^(-1)t)/(sqrt(1+t^(2))),t in R

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

If x=cos^-1(1/(sqrt(1+t^2))) , y=sin^-1(1/(sqrt(t^2+1))) then dy/dx is independent of t.

Find (dy)/(dx), when x=cos^(-1)1/(sqrt(1+t^2))"and"y=sin^(-1)1/(sqrt(1+t^2)),tR

Differentiate cos^-1(1/(sqrt(1+t^2))) w.r.t sin^-1(t/(sqrt(1+t^2)))

The value of dy/dx , when cos x = (1)/( sqrt(1 + t^(2))) and sin y = (t)/(sqrt(1 + t^(2))) is