Home
Class 12
MATHS
Separate the intervals of monotonocity f...

Separate the intervals of monotonocity for the function `f(x)=3cos^4x+10cos^3x+6cos^2x-3,x in [0,pi]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Separate the intervals of monotonocity for the function f(x)=x^(2)e^(-x)

Separate the intervals of monotonocity for the function f(x)=sin x+cos x,x in(0,2 pi)

Separate the intervals of monotonocity for the function f(x)=-2x^(3)-9x^(2)-12x+1

Separate the intervals of monotonocity of the function: f(x)=3x^(4)-8x^(3)-6x^(2)+24x+7

Separate the intervals of monotonocity of the function: f(x)=-sin^(3)x+3sin^(2)x+5,x in[-(pi)/(2),(pi)/(2)]

The function f(x) = 3 cos^(4)x + 10 cos^(3) x + 6 cos^(2)x - 3, (0 le x le pi) is -

In the interval (0, (pi)/(2)) the function f (x) = cos ^(2) x is :

The interval in which f(x)=3cos^(4)x+10cos^(3)x+6cos^(2)x-3 increases or decreases in (0,pi)

The interval in which the function f(x)=sin x+cos x in x in[0,2 pi] is