Home
Class 12
MATHS
int 1/(x^2 - a^2) dx = 1/( 2a) log ((x-a...

`int 1/(x^2 - a^2) dx = 1/( 2a) log ((x-a) /( x+a)) + c`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(x^(2)-a^(2))dx=(1)/(2)a log(x-(a)/(x)+a)+c

Prove that : int 1/(a^(2)-x^(2)) dx = 1/(2a) log |(a+x)/(a-x)|+c.

int 1/(x(log x)^2)dx

int(1)/(a^(2))-x^(2)dx=(1)/(2)a log(a+(x)/(a)-x)+c

Prove that int frac{1}{sqrt (x^2 - a^2)} dx = log (x+ sqrt (x^2 -a^2)) + c

int 1/ sqrt (a^2 + x^2) dx = log ( x + sqrt(x^2 + a^2)) + c

If int x log(1 + x^2) dx = phi(x) log(1 + x^2) + psi(x) + c then

int(1)/(x(log x)^(2))dx

int_(1)^(2)x log x dx =

int_(1)^(2)x log x dx =