Home
Class 12
MATHS
The abscissas of point Pa n dQ on the cu...

The abscissas of point `Pa n dQ` on the curve `y=e^x+e^(-x)` such that tangents at `Pa n dQ` make `60^0` with the x-axis are. `1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2)` `1n((sqrt(3)+sqrt(7))/2)` (c) `1n((sqrt(7)-sqrt(3))/2)` `+-1n((sqrt(3)+sqrt(7))/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(2)+sqrt(3)+sqrt(7)-(1)/(sqrt(2)+sqrt(3)+sqrt(7))=?

lim_(n rarr oo)((sqrt(n+3)-sqrt(n+2))/(sqrt(n+2)-sqrt(n+1)))

N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N

N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

[ If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) then N equals [ (A) 1, (B) 2sqrt(2)-1 (C) (sqrt(5))/(2), (D) (2)/(sqrt(sqrt(5)+1))]]

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) , then N+2 equals

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

The sum n terms of the series (1)/(sqrt(1)+sqrt(3))+(1)/(sqrt(3)+sqrt(5))+(1)/(sqrt(5)+sqrt(7))+... is sqrt(2n+1) (b) (1)/(2)sqrt(2n+1)(c)(1)/(2)sqrt(2n+1)-1(d)(1)/(2){sqrt(2n+1)-1}