Home
Class 12
MATHS
If a variable tangent to the curve x^2y=...

If a variable tangent to the curve `x^2y=c^3` makes intercepts `a , bonx-a n dy-a x e s ,` respectively, then the value of `a^2b` is `27c^3` (b) `4/(27)c^3` (c) `(27)/4c^3` (d) `4/9c^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a variable tangent to the curve x^(2)y=c^(3) make intercepts a,b on x and y axis respectively.Then the value of a^(2)b is

If 4:3=x^(2):12, then the value of x(x>0)16( b) 4(c)9(d)3

If 8^(x+1)=64, what is the value of 3^(2x+1)?1 (b) 3 (c) 9 (d) 27

If the maximum and minimum values of y=(x^(2)-3x+c)/(x^(2)+3x+c) are 7 and (1)/(7) respectively then the value of c is equal to (A)3(B)4(C)5 (D) 6

If a = 29, b = 24 and c = 27, find the value of a^3+b^3+c^3-3abc

If X^2+4x+3=0 , then the value of (X^3)/(X^6+27x^3+27 is (A) -1 (B) -frac(1)(2) (C) 1 (D) 1/2

Suppose a,b,c are such that the curve y=ax^(2)+bx+c is tangent to y=3x-3 at (1,0) and is also tangent to y=x+1 at (3,4). Then the value of (2a-b-4c) equals

Find the products given below and in each case verify the result for a=1,b=2 and c=3: ((4)/(9)abc^(3)) xx((-27)/(5)a^(3)b^(3))xx(-8b^(3)c)

If y^c=27^@, then: y= (a) ((20pi)/3)^c (b) ((20pi)/3) (c) ((3pi)/20) (d) pi/20

If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to