Home
Class 12
MATHS
If (w != 1) is a cube root of unity then...

If `(w != 1)` is a cube root of unity then `|[1, 1+i+w^2, w^2], [1-i, -1, w^2-1] , [-i, -i+w-1, -1]| = `

Promotional Banner

Similar Questions

Explore conceptually related problems

If omegane1 is a cube root of unity , then the value of |(1,1+i+w^2,w^2),(1-i,-1,w^2 -1),(-i,-1+w-i,-1)| , is

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is a cube root of unity, then 1+ omega^(2)= …..

If w is a complex cube root of unity. Show that |[1,w, w^2],[w, w^2, 1],[w^2, 1,w]|=0 .

If (omega ne1) is a cube root of unity , then {:(1 , 1 + i+ omega^(2) , omega^(2)) , (1-i, -1 , omega^(2) -1) , (-i , -1 + omega - i, -1):}|

If omega(ne 1) is a cube root of unity, then |{:(1,1+omega^(2),omega^(2)),(1-i,-1,omega^(2)-1),(-i,-1+omega,-1):}| equals :

If w is an imaginary cube root of unity, find the value of |[1,w, w^2],[ w ,w^2 ,1],[w^2 ,1,w]| .