Home
Class 12
MATHS
If x= e^(cos2t) and y = e^(sin2t), the...

If `x= e^(cos2t)` and `y = e^(sin2t)`, then move that `(dy)/(dx) = -(ylogx)/(xlogy)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= e^(cos2t) and y = e^(sin2t) , then prove that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .

Find (dy)/(dx) : x= e^(cos 2t) and y= e^(sin 2t) show that, (dy)/(dx)= (-y log x)/(x log y)

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x,=e^(cos2t) and y=e^(sin2t), prove that (dy)/(dx),=-(y log x)/(x log y)

If x=e^(sin3t),y=e^(cos3t),"show that "(dy)/(dx)=-(ylogx)/(xlogy)

If x^2 = a^(sin^(-1)t) and y^2= a^(cos^(-1)t) then show that (dy)/(dx)=-y/x .