Home
Class 12
PHYSICS
A copper rod of length l is rotated abou...

A copper rod of length l is rotated about one end perpendicular to the uniform magnetic field B with constant angular velocity `omega` . The induced e.m.f. between its two ends is

A

`Bomegal^(2)`

B

`(3)/(2)Bomegal^(2)`

C

`(1)/(2)Bomegal^(2)`

D

`2 Bomegal^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the induced e.m.f. (electromotive force) between the two ends of a copper rod of length \( l \) that is rotated about one end perpendicular to a uniform magnetic field \( B \) with a constant angular velocity \( \omega \), we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Setup**: - We have a copper rod of length \( l \) rotating about one end in a uniform magnetic field \( B \). - The rod is perpendicular to the magnetic field, and it rotates with a constant angular velocity \( \omega \). 2. **Induced EMF Formula**: - The induced e.m.f. \( \mathcal{E} \) can be calculated using Faraday's law of electromagnetic induction, which states: \[ \mathcal{E} = -\frac{d\Phi}{dt} \] where \( \Phi \) is the magnetic flux. 3. **Calculating Magnetic Flux**: - The magnetic flux \( \Phi \) through the area swept by the rod can be expressed as: \[ \Phi = B \cdot A \] where \( A \) is the area swept by the rod as it rotates. 4. **Area Swept by the Rod**: - As the rod rotates, it sweeps out a circular sector. The angle \( \theta \) that the rod sweeps in time \( t \) is given by: \[ \theta = \omega t \] - The area \( A \) swept by the rod at time \( t \) is: \[ A = \frac{1}{2} L^2 \theta = \frac{1}{2} L^2 (\omega t) \] - Therefore, the magnetic flux becomes: \[ \Phi = B \cdot \frac{1}{2} L^2 (\omega t) \] 5. **Finding the Rate of Change of Flux**: - To find the induced e.m.f., we need to differentiate the magnetic flux with respect to time: \[ \frac{d\Phi}{dt} = \frac{d}{dt} \left( B \cdot \frac{1}{2} L^2 (\omega t) \right) = B \cdot \frac{1}{2} L^2 \omega \] 6. **Calculating Induced EMF**: - Substituting this into the e.m.f. formula gives: \[ \mathcal{E} = -\frac{d\Phi}{dt} = -\left( B \cdot \frac{1}{2} L^2 \omega \right) \] - The negative sign indicates the direction of the induced e.m.f. according to Lenz's law, but the magnitude of the induced e.m.f. is: \[ \mathcal{E} = \frac{1}{2} B L^2 \omega \] ### Final Answer: The induced e.m.f. between the two ends of the copper rod is: \[ \mathcal{E} = \frac{1}{2} B L^2 \omega \]
Promotional Banner

Topper's Solved these Questions

  • ELECTROMAGNETIC INDUCTION

    AAKASH INSTITUTE|Exercise ASSIGNMENT(SECTION - B) (OBJECTIVE TYPE QUESTIONS)|11 Videos
  • ELECTROMAGNETIC INDUCTION

    AAKASH INSTITUTE|Exercise ASSIGNMENT(SECTION -C) Previous Years Questions|23 Videos
  • ELECTROMAGNETIC INDUCTION

    AAKASH INSTITUTE|Exercise EXERCISE|17 Videos
  • ELECTRIC CHARGES AND FIELDS

    AAKASH INSTITUTE|Exercise SECTION -J(Aakash Challengers Questions)|5 Videos
  • ELECTROMAGNETIC WAVES

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION - D Assertion-Reason Type Questions|25 Videos

Similar Questions

Explore conceptually related problems

A conducting rod is rotated about one end in a plane perpendicular to a uniform magnetic field with constant angular velocity. The correct graph between the induced emf (e) across the rod and time (t) is

A half metre rod is rotating abou tone fixed end perpendicular to uniform magnetic field 4xx10^(-5)T with angular velocity 720 rpm. The emf induced across its ends is

A circular loop is kept perpendicular to a uniform magnetic field. Loop is rotated about its diameter with constant angular velocity.

A conducing rod of length l is falling with a velocity v perpendicular to a unifrorm horizontal magnetic field B . The potential difference between its two ends will be

A metallic rod of length l is hinged at the point M and is rotating about an axis perpendicular to the plane of paper with a constant angular velocity omega . A uniform magnetic field of intensity B is acting in the region (as shown in the figure) parallel to the plane of paper. The potential difference between the points M and N

a semicircle wire of radius R is rotated with constant angular velocity about an axis passing through one end and perpendicular to the plane of wire. There is a uniform magnetic field of strength B . The induced emf between the ends is

AAKASH INSTITUTE-ELECTROMAGNETIC INDUCTION-ASSIGNMENT(SECTION - A) (OBJECTIVE TYPE QUESTIONS)
  1. A metallic ring with a small cut is held horizontally and a magnet is ...

    Text Solution

    |

  2. A loop of Irregular shape made of flexible conducting wire carrying cl...

    Text Solution

    |

  3. A copper rod of length l is rotated about one end perpendicular to the...

    Text Solution

    |

  4. A coil of cross-sectional area A having n turns is placed in uniform m...

    Text Solution

    |

  5. A flat coil of 500 turns each of area 50 cm^(2) rotates in a uniform m...

    Text Solution

    |

  6. Eddy currents are produced when

    Text Solution

    |

  7. A motor starter

    Text Solution

    |

  8. A simple electric motor has an armature resistance of 1Omega and runs ...

    Text Solution

    |

  9. Which of the following is possible application of an RC circuit?

    Text Solution

    |

  10. The current passing through a choke coil of self inductance 5 H is dec...

    Text Solution

    |

  11. When the number of turns in a coil is doubled without any change in th...

    Text Solution

    |

  12. A coil of resistance 10Omega and an inductance 5H is connected to a 10...

    Text Solution

    |

  13. Obtain the expression for the magnetic energy stored in a solenoid in ...

    Text Solution

    |

  14. An inductor is connected to a direct voltage source through a switch. ...

    Text Solution

    |

  15. A long solenoid has self inductance. L. If its length is doubled keepi...

    Text Solution

    |

  16. If L and R denote inductance and resistance respectively, then the dim...

    Text Solution

    |

  17. A solenoid of 2000 turns is wound over a length of 0.3 m. The area aof...

    Text Solution

    |

  18. With the decrease of current in the primary coil from 2 amperes to zer...

    Text Solution

    |

  19. Two coaxial coils are very close to each other and their mutual induct...

    Text Solution

    |

  20. The coefficients of self induction of two inductance coil are 0.01 H a...

    Text Solution

    |