Home
Class 12
PHYSICS
The dimensional formula of (1)/(2) epsil...

The dimensional formula of `(1)/(2) epsilon_(0) E^2` is `(E = "electric field")`

A

`[ M L T^(-1) ]`

B

`[ M L^(2) T^(-2) ]`

C

`[ M L^(-1) T^(-2) ]`

D

`[ M L^(2) T^(-1) ]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the dimensional formula of \(\frac{1}{2} \epsilon_0 E^2\), we will break down the components involved: \(\epsilon_0\) (the permittivity of free space) and \(E\) (the electric field). ### Step 1: Dimensional Formula of Electric Field \(E\) The electric field \(E\) is defined as the force \(F\) experienced by a charge \(q\) per unit charge: \[ E = \frac{F}{q} \] **Dimensional Formula of Force \(F\)**: \[ F = m \cdot a \quad \text{(where \(m\) is mass and \(a\) is acceleration)} \] The dimensional formula for mass \(m\) is \([M]\) and for acceleration \(a\) is \([L T^{-2}]\). Thus, the dimensional formula for force \(F\) is: \[ [F] = [M][L T^{-2}] = [M L T^{-2}] \] **Dimensional Formula of Charge \(q\)**: The dimensional formula for charge is not directly defined, but we can express it in terms of electric field. However, for our purpose, we will assume the dimensional formula for charge is \([Q]\). Now substituting back into the formula for electric field: \[ [E] = \frac{[F]}{[q]} = \frac{[M L T^{-2}]}{[Q]} = [M L T^{-2} Q^{-1}] \] ### Step 2: Dimensional Formula of \(\epsilon_0\) The permittivity of free space \(\epsilon_0\) can be derived from Coulomb's law, which states: \[ F = \frac{q_1 q_2}{4 \pi \epsilon_0 r^2} \] Rearranging gives: \[ \epsilon_0 = \frac{q_1 q_2}{4 \pi F r^2} \] Using the dimensional formulas we have: - Dimensional formula of \(q^2\) is \([Q^2]\) - Dimensional formula of \(r^2\) is \([L^2]\) - Dimensional formula of \(F\) is \([M L T^{-2}]\) Thus, we can write: \[ [\epsilon_0] = \frac{[Q^2]}{[M L T^{-2}] [L^2]} = \frac{[Q^2]}{[M L^3 T^{-2}]} \] This simplifies to: \[ [\epsilon_0] = [M^{-1} L^{-3} T^{2} Q^{2}] \] ### Step 3: Dimensional Formula of \(\epsilon_0 E^2\) Now we can find the dimensional formula of \(\epsilon_0 E^2\): \[ [E^2] = \left([M L T^{-2} Q^{-1}]\right)^2 = [M^2 L^2 T^{-4} Q^{-2}] \] Now substituting back into \(\epsilon_0 E^2\): \[ [\epsilon_0 E^2] = [M^{-1} L^{-3} T^{2} Q^{2}] \cdot [M^2 L^2 T^{-4} Q^{-2}] \] Multiplying these gives: \[ [\epsilon_0 E^2] = [M^{1} L^{-1} T^{-2}] \] ### Step 4: Dimensional Formula of \(\frac{1}{2} \epsilon_0 E^2\) Since the numerical coefficient \(\frac{1}{2}\) is dimensionless, the dimensional formula of \(\frac{1}{2} \epsilon_0 E^2\) remains the same: \[ \left[\frac{1}{2} \epsilon_0 E^2\right] = [M L^{-1} T^{-2}] \] ### Final Answer: The dimensional formula of \(\frac{1}{2} \epsilon_0 E^2\) is: \[ [M L^{-1} T^{-2}] \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELECTROMAGNETIC WAVES

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION - B Objective Type Questions|10 Videos
  • ELECTROMAGNETIC WAVES

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION - C Previous Years Questions|22 Videos
  • ELECTROMAGNETIC WAVES

    AAKASH INSTITUTE|Exercise EXERCISE|9 Videos
  • ELECTROMAGNETIC INDUCTION

    AAKASH INSTITUTE|Exercise ASSIGNMENT(SECTION -D) Assertion-Reason type Question)|15 Videos
  • ELECTROSTATIC POTENTIAL AND CAPACITANCE

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION - D|13 Videos

Similar Questions

Explore conceptually related problems

Obtain the dimensional formula of epsilon_(0) .

Find the dimensional formula of epsilon_0 .

Knowledge Check

  • The dimensional formula of sqrt((mu_(0))/(epsilon_(0))) is

    A
    `[ ML^(2) T^(-3) A^(2)]`
    B
    `[M^(0) LT^(-1) A^(0)]`
    C
    `[ ML^(2) T^(-3) A^(-2)]`
    D
    `[ M^(-1) L^(-2) T^(3) A^(2) ]`
  • The dimensional formula mu_(0)epsilon_0 is

    A
    `M^0L^(-2)T^2`
    B
    `M^0 L^2T^(-2)`
    C
    `M^(0) L^(1) T^(-1)`
    D
    `M^(0) L^(-1) T^(1)`
  • The dimensional formula of electric flux is

    A
    `[M^(1) L^(2) T^(-2) A^(-1)]`
    B
    `[M^(-1) L^(3) T^(-3) A]`
    C
    `[M^(1) L^(3) T^(-3) A^(-1)]`
    D
    `[M^(1) L^(-3) T^(-3) A^(-1)]`
  • Similar Questions

    Explore conceptually related problems

    Match dimensional formula of epsilon_0 , mu_0 capacitance C and electric field

    The dimensions of (1)/(epsilon_(0))(e^(2))/(hc) are

    The dimensional formula of electric intensity is

    The dimensional formula of electric potential is

    The dimensional formula for the physical quantity (E^(2)mu_(0)epsilon_(0))/(B^(2)) is (E = electric field and B = magnetic field)