Home
Class 13
MATHS
int(0)^(1)x^(2)*e^(x)dx...

int_(0)^(1)x^(2)*e^(x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=int_(0)^(1)(e^(x))/(x+1)dx then int_(0)^(1)(x^(2)e^(x))/(x+1)dx=

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to

Let A=int_(0)^(1)(e^(x))/(x+1) dx then answer the following questions in terms of A. Q. int_(0)^(1)(x^(2)e^(x))/(x+1)dx equals

Let A=int_(0)^(1)(e^(x))/(x+1) dx then answer the following questions in terms of A. Q. int_(0)^(1)(x^(2)e^(x))/(x+1)dx equals

int_(0)^(1)x^2e^(2x)dx

I=int_(0)^(1)e^(x^(2)-x)dx then

If beta+2int_(0)^(1)x^(2)e^(-x^(2))dx=int_(0)^(1)e^(-x^(2))dx then the value of beta is (A) e^(-1)(B)e(C)(1)/(2e) (D) cant be determined

The value of int_(0)^(1)e^(x^(2)-x)dx is (a) 1(c)>e^(-(1)/(4))(d)

If beta +2 int_0^(1) x^(2)e^(-x^(2)) dx = int_0^(1) e^(-x^(2) , then beta =

int_(0)^(1)e^(2x)e^(e^(x) dx =)