Home
Class 12
MATHS
int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alo...

`int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2)` , then (a,b) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If int (2x^(2)+3)/((x^(2)-1)(x^(2)+4)) dx = a log((x-1)/(x+1)) +b tan^(-1) (x/2) +c then the values of a and b are

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

If int(2x^2+3)/((x^2-1)(x^2+4))dx=alog((x-1)/(x+1))+btan^(- 1) (x/2)+C then the values of a and b are respectively (A) 1/2,1/2 (B) 1,1 (C) 1/2,1 (D) None

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+2))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

If int((2x^(2)+1)dx)/((x^(2)-4)(x^(2)-1))=log[((x+1)/(x-1))^(a)((x-2)/(x+2))^(b)]+c , then the values of a and b are respectively

If int(1)/((x^2+1)(x^2+4))dx=a tan^(-1). x+b tan^(-1).(x)/(2)+c , then :

If int (x^(2) + 2)/((x^(2) + 1)(x^(2) + 4)) dx = A tan^(-1) x + B tan^(-1)""(x)/(2) + c then (A, B) =