Home
Class 11
MATHS
[y=e^(a cos^(2)x);-1<=x<=1],[(1-x^(2))(d...

[y=e^(a cos^(2)x);-1<=x<=1],[(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=?]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(a cos^(-1)x),-2lexle1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx-a^(2)y=0

If y=e^(a cos^(-1)x),-1<=x<1, show that(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^(a cos^(-1)x),-1<=x<=1 then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^(a cos^(-1)x),-1<=x<=1, show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^(a cos^(-1)x),-1<=x<=1, show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y=e^(a cos^-1x), -1lexle1 show that: (1 - x^2) y_2 - xy_1-a^2y = 0

If y = e^(a cos^(-1)x) show that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx) -a^(2)y= 0 . Where -1 le x le 1

If y= e^(a cos^(-1)x), -1 le x le 1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 .

If y = e^(a cos^(-1)x), -1 le x le 1 show that (1 - x)^(2) (d^2 y)/(dx^2) - x (dy)/(dx) - a^(2)y = 0 .

If y= e^(a cos^(-1)x), -1 le x le 1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 .