Home
Class 12
MATHS
[f(x),=((e^(3x-1))sin x^(0))/(x^(2)),x!=...

[f(x),=((e^(3x-1))sin x^(0))/(x^(2)),x!=0],[,=k]}[at],[x=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x)/(x^(2)) , for x!=0 , then f(0)=

If {:(f(x),=((e^(kx)-1)^(2)sinx)/(x^(3)),",",x != 0),(,=4, ",",x = 0):} is continuous at x = 0, then k =

If {:(f(x),=((e^(kx)-1)^(2)sinx)/(x^(3)),",",x != 0),(,=4, ",",x = 0):} is continuous at x = 0, then k =

Let f(x)=((e^(kx)-1)*sin Kx)/(x^(2)) for x!=0;=4, for x=0 is continuous at x=0 then k

f(x)= ((e^(Kx)-1)(sin K^(2)x))/(4x^(2)),x!=0 ,f(0)=16 is continuous at x=0, then K=

Let f(x)={[((e^(3x)-1))/(x),,x!=0],[3,,x=0]} then 2f'(0) is

{:(f(x),=((3^(sin x)-1)^(2))/(xlog(1+x)),",",x != 0),(,=k, ",",x = 0):} if f is continouous at x = 0, then k =

{:(f(x),=((3^(sin x)-1)^(2))/(xlog(1+x)),",",x != 0),(,=k, ",",x = 0):} if f is continouous at x = 0, then k =