Home
Class 12
MATHS
tan^(-1)x+tan^(-1)2x=(pi)/(2)...

tan^(-1)x+tan^(-1)2x=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

Solve tan^(-1)x +"tan"^(-1) (2x)/(1-x^(2))=(pi)/(2) .

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0, -pi/2 if x<0

Prove that: tan^(-1)x+tan^(-1)(1/x)={pi/2,ifx >0-pi/2,ifx<0

Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0-pi/2,ifx<0

Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0-pi/2,ifx<0

Solve : tan^(-1)x+tan^(-1)((2x)/(1-x^2))=pi/2