Home
Class 10
MATHS
x^(2)+((a)/(a+b)+(a+b)/(a))x+1=0...

x^(2)+((a)/(a+b)+(a+b)/(a))x+1=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x^(2)+((a+b)/(a)+(a)/(a+b))x+1=0

Solve for x : (1)/(a + b + x) = (1)/(a) + (1)/(b) + (1)/(x) , a ne b ne 0 , x ne 0 , x ne -(a + b)

If lim_(h rarr 0) (1 + (a)/(x) + (b)/(x^(2)))^(2x) = e^(2) , then the values of a and b, are :

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

Solve for 'x' : (1)/(a+b+x)=(1)/(a)+(1)/(b)+(1)/(x) " " a != 0, b!=0, x !=0

a#b=(-1)^(ab)(a^(b)+b^(a)) f(x)=x^(2)-2x if x ge 0 =0if x lt0 g(x)=2x, if x ge0 =1, if x lt0 Find the value of f(g(2#3))+g(f(1#2)):

7. If f(x)=|x-a|+|x + b| , x in R,b>a>0 . Then (1) f'(a^+)=1 (2) f'(a^+)=0 (3) f'(-b^ +) = 0 (4) f(-b^+)=1

let f(x)=a_(0)+a_(1)x+a_(2)x^(2)... and (f(x))/(1-x)=b_(0)+b_(1)x+b_(2)x^(2).... then