Home
Class 12
MATHS
sin^(10)x+cos^(10)x=(29)/(16)cos^(4)2x...

sin^(10)x+cos^(10)x=(29)/(16)cos^(4)2x

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : sin^(10)x+cos^(10)x=29/16cos^4 2x

Solve : sin^(10)x+cos^(10)x=29/16cos^4 2x

Solve : sin^(10)x+cos^(10)x=29/16cos^4 2x

sin^(10)x+cos^(10)x=29/16cos^4 2x

sin^(10)x+cos^(10)x=29/16cos^4 2x

Number of solutions of equation 16(sin^10x+cos^10x)=29 cos^4 2x in interval [-pi,pi] is

if sin x+sin^(2)x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x=

2cosx-cos3x-cos5x= ............... A) 16 cos ^(3) x sin ^(2) x B) 16 sin^(2) x cos ^(2) x C) 4 cos ^(2) x sin ^(2) x D) 4 sin ^(2) x cos ^(2)x

If sinx + sin^(2)x =1 then cos^(12)2x + 3cos^(10)x+3cos^(8)x + cos^(6)x =