Home
Class 12
MATHS
" Let "z(1)=2-iquad ,quad z(2)=-2+iquad ...

" Let "z_(1)=2-iquad ,quad z_(2)=-2+iquad " find "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(1)=2-i, z_(2)=-2+i . Find the imaginary part of (1)/(z_(1)bar(z_(2)))

Let z_(1) =2-i, z_(2) =-2 + i , Find (Re(z_(1)z_(2))/barz_(1))

Let z_(1)=2 -I, z_(2)= -2 +i , find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) , (ii) Im ((1)/(z_(1)bar(z)_(2)))

Let z_(1)=2-i, z_(2)= -2+i . Find (i) Re((z_(1)z_(2))/(z_1)) (ii) Im((1)/(z_(1)z_(2))) .

Let z_(1) =2-I, z_(2) =-2 + i , Find (i) (Re(z_(1)z_(2))/barz_(1)) , (ii) Im(1/(z_(1)barz_(1)))

Let z_(1) =2-I, z_(2) =-2 + i , Find (i) (Re(z_(1)z_(2))/barz_(1)) , (ii) Im(1/(z_(1)barz_(1)))

Let z_(1) =2-I, z_(2) =-2 + i , Find (i) (Re(z_(1)z_(2))/barz_(1)) , (ii) Im(1/(z_(1)barz_(1)))

Let z_(1) =2-I, z_(2) =-2 + i , Find (i) (Re(z_(1)z_(2))/barz_(1)) , (ii) Im(1/(z_(1)barz_(1)))

Let z_(1)=2-i and z_(2)=2+i , then "Im"((1)/(z_(1)z_(2))) is

If z_(1) = 2 - i , z_(2) = 1 + i , " find " |(z_(1) + z_(2) + 1)/( z_(1) -z_(2) + 1)|