Home
Class 12
MATHS
Find the value of lim (x -> 0) ln (1+{x}...

Find the value of `lim _(x -> 0) ln (1+{x}) / ({x})` where `{x}` denotes the fractional part of x.

Promotional Banner

Similar Questions

Explore conceptually related problems

5.Find the value of lim_(x->0) log(1+x)/(x)

5.Find the value of lim_(x->0) log(1+x)/(x)

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

The value of lim_(xrarr1)(xtan{x})/(x-1) is equal to (where {x} denotes the fractional part of x)

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.