Home
Class 12
MATHS
यदि tan^(-1)(1+x)+tan^(-1)(1-x)= (pi)/(6...

यदि `tan^(-1)(1+x)+tan^(-1)(1-x)= (pi)/(6)`, तो सिद्ध कीजिए कि `x^(2) = 2sqrt(3)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^(2)

If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^(2)

If tan^(-1)((a+x)/(a) )+ tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^2

if tan^(-1)((sqrt(1+x^(2))-1)/(x))=(pi)/(45) then:

If tan^(-1)""(a+x)/a+tan^(-1)""(a-x)/a=pi/6 , then x^(2)=