Home
Class 6
MATHS
" 1."x=(2t)/(1+t^(2))" and "y=(1-t^(2))/...

" 1."x=(2t)/(1+t^(2))" and "y=(1-t^(2))/(1+t^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

Show that the point (x,y) given y x = ( 2at)/( 1+t^(2)) and y = (a( 1-t^(2)))/( 1+t^(2)) lies on a circle..

If x = (2t)/(1+t^(2)), y = (1-t^(2))/(1+t^(2)) then dy/dx =

Find dy/dx at t = 2 when x = (2bt)/(1+t^2) and y = (a(1-t^2))/(1+t^2)

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=

If x=(1-t^(2))/(1+t^(2))" and "y=(2t)/(1+t^(2))," then: "(dy)/(dx)|_(t=1) is

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2)), then find (dy)/(dx) at t=2

If x = ( 2 t)/( 1 + t^(2)), y = (1 - t^(2))/( 1 + t ^(2)) then find ( dy)/( dx) at t = 2