Home
Class 11
MATHS
" xample 2"" Prove that "2^(n)>n" for a...

" xample 2"" Prove that "2^(n)>n" for all positive integers "n" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2^(n) gt n for all positive integers n.

Prove that 2^(n) gt n for all positive integers n.

Prove that 2^(n) gt n for all positive integers n.

Prove that quad 2^(n)>n for all positive integers n.

Prove that 2^n gt n for all positive integers n.

Prove that 2^n gt n for all positive integtrs n.

Prove that (n!)^(2)

Prove that (n !)^2 < n^n(n !)<(2n)! for all positive integers n

Prove that (n!)^2 le n^n. (n!)<(2n)! for all positive integers n.

If A=[1101], prove that A^(n)=[1n01] for all positive integers n.