Home
Class 12
MATHS
Using Lagranges mean value theorem, prov...

Using Lagranges mean value theorem, prove that `(b-a)sec^2a lt (tanb-tana) lt (b-a)sec^2b` , where `0ltaltbltpi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using Lagrange's mean value theorem prove that, (b-a)sec^(2)a lt tan b-tan a lt (b-a)sec^(2)b when 0 lt a lt b lt (pi)/(2) .

Using Lagranges mean value theorem,prove that (b-a)sec^(2)a<(tan b-tan a)<(b-a)sec^(2)b where 0

Using Lagranges mean value theorem, prove that |cosa-cosb|<|a-b|dot

Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a ,where 0ltaltb

Using Lagranges mean value theorem, prove that |cosa-cosb|<=|a-b|dot

Using Lagranges mean value theorem, prove that |cosa-cosb|<=|a-b|dot

Using Lagranges mean value theorem, prove that |cosa-cosb|<=|a-b|dot

Using Lagranges mean value theorem, prove that |cosa-cosb|<=|a-b|dot

Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a, where 0ltaltbdot

Using Lagranges mean value theorem, prove that (b-a)/bltlog(b/a)lt(b-a)/a, where 0ltaltbdot