Home
Class 11
MATHS
Provet that: sin^(2)72^(2)-sin^(2)60^(...

Provet that:
`sin^(2)72^(2)-sin^(2)60^(2)=(sqrt(5)-1)/(8)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)(72^(@))-sin^(2)(60^(@))=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that sin ^(2) 72 ^(@)- sin ^(2) 60 ^(@)= (sqrt5-1)/(8).

sin ^(2) 24 ^(@) - sin ^(2) 6^(@) = (sqrt5 -1)/(8).

Prove that : sin^2(72^@) - sin^2 (60^@) = (sqrt5 - 1)/8

Prove that (i) "sin"^(2) 24^(@) - sin^(2) 6^(@) =((sqrt(5)-1))/(8) " "(ii) "sin"^(2) 72^(@) - cos^(2) 30^(@) =(sqrt(5)-1)/(8)

Prove that : sin^2 72^@- sin^2 60^@= (sqrt5-1)/8 .

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8