Home
Class 9
MATHS
[quad quad A(n)],[" iil "x^(3)-3x^(2)-9x...

[quad quad A_(n)],[" iil "x^(3)-3x^(2)-9x-5],[" atres "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x^3-3x^2-9x-5

Factorize x^(3)-3x^(2)-9x-5

Factorize x^(3)-3x^(2)-9x-5

Factorise : x^3-3x^2-9x-5 .

The factors of x^3 - 3x^2 - 9x - 5 are :

f(x)=9x^(3)-3x^(2)+x-5,g(x)=x-(2)/(3)

Concept : Let a_(0)x^(n)+a_(1)x^(n-1)+…+a_(n-1)x+a_(n)=0 be the nth degree equation with a_(0),a_(1),…a_(n) integers. If p/q is a rational root of this equation, then p is a divisor of a_(n) and q is a divisor of a_(0) . If a_(0)=1 , then every rational root of this equation must be an integer. The roots of the equation x^(3)-9x^(2)+23x-15=0 , if integers, are in

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is