Home
Class 12
PHYSICS
A ball is thrown from the top of a 35m h...

A ball is thrown from the top of a 35m high tower with initial velocity of magnitude `u=80" ms"^(-1)` at an angle `25^(@)` with horizontal.
Find the time to reach the ground and the horizontal distance covered by the ball.

Promotional Banner

Similar Questions

Explore conceptually related problems

A ball is thrown from the top of tower with an initial velocity of 10ms^(-1) at an angle of 30^(@) with the horizontal. If it hits the ground of a distance of 17.3m from the back of the tower, the height of the tower is (Take g=10ms^(-2))

A ball is thrown from the top of 36m high tower with velocity 5m//ss at an angle 37^(@) above the horizontal as shown. Its horizontal distance on the ground is closest to [ g=10m//s^(2) :

A ball is projected horizontal from the top of a tower with a velocity v_(0) . It will be moving at an angle of 60^(@) with the horizontal after time.

A ball is thrown from the top of a tower with an initial velocity of 10 m//s at an angle of 30^(@) above the horizontal. It hits the ground at a distance of 17.3 m from the base of the tower. The height of the tower (g=10m//s^(2)) will be

A ball is thrown from the top of a tower with an intial velocity of 10 m//s at an angle 37^(@) above the horizontal, hits the ground at a distance 16 m from the base of tower. Calculate height of tower. [g=10 m//s^(2)]

A ball is thrown from the top of a tower of 61 m high with a velocity 24.4 ms^(-1) at an elevation of 30^(@) above the horizontal. What is the distance from the foot of the tower to the point where the ball hits the ground?

A ball is projected upwards from the top of a tower with a velocity 50ms^-1 making an angle 30^@ with the horizontal. The height of tower is 70m. After how many seconds from the instant of throwing, will the ball reach the ground. (g=10 ms^-2)

A ball is thrown from the top of a building 45 m high with a speed 20 m s^-1 above the horizontal at an angle of 30^@ . Find (a) The time taken by the ball to reach the ground. (b) The speed of ball just before it touches the ground.

A ball is thrown from the ground with velocity u at an angle theta with horizontal. If the coefficient of restitution is e , find the time of flight , the maximum height and the horizontal range after the first collision.

A ball is thrown from the ground with a velocity of 20sqrt3 m/s making an angle of 60^@ with the horizontal. The ball will be at a height of 40 m from the ground after a time t equal to (g=10 ms^(-2))