Home
Class 11
MATHS
[" If "f(x)=x+(1)/(x)," then prove that ...

[" If "f(x)=x+(1)/(x)," then prove that "],[[f(x)]^(3)=f(x^(3))+3f((1)/(x))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

ff(x)=x+(1)/(x), thenprovethat [f(x)]^(3)=f(x^(3))+3f((1)/(x))

If f(x),=x+(1)/(x), prove that [f(x)]^(3),=f(x^(3))+3f((1)/(x))dots

(i) If f(x) = x + (1)/(x) prove that: [f(x)]^(3) = f(x^(3)) + 3f ((1)/(x)) (ii) If f(x) = x^(3) - (1)/(x^(3)) , prove that f(x) + f((1)/(x)) = 0 (iii) If f(x) = (1-x^(2))/(1+ x^(2)) , prove that f (tan theta) = cos 2 theta

If f is a real function defined by f(x)=(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3)

If f is a real function defined by f(x)=(x-1)/(x+1) , then prove that f(2x)=(3f(x)+1)/(f(x)+3)

Let (x) is a real function, defines as f(x) =(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3).

Let (x) is a real function, defines as f(x) =(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3).

If f(x)=x+(1)/(x) , such that [f(x)]^(3)=f(x)^(3)+lambdaf((1)/(x)) , then lambda=