Home
Class 9
MATHS
" (iii) "f(x)={[(x-a)sin((1)/(x-a)),,x!=...

" (iii) "f(x)={[(x-a)sin((1)/(x-a)),,x!=a],[0,,x=a]" at "x=a

Promotional Banner

Similar Questions

Explore conceptually related problems

Examine for continuity, each of the following functions: f(x) = {:{((x-a) sin (1/(x-a)), x ne a), (0, x = a):} at x = a

Let f,g:R rarr R be two function diffinite f(x)={x sin((1)/(x)),x!=0; and 0,x=0 and g(x)=xf(x)

Discuss the continuity of f(x)={x^(2)sin((1)/(x)),quad x!=0quad 0,quad x= at x=0

Test for continuity of the following function at x=a:f(x)={(x- a) sin((1)/(x-a), where x!=a(x-a)0, when x=a

If f(x)=sin((1)/(x)), then at x=0

If f(x)={x^(2)sin((1)/(x^(2))),x!=0,k,x=0 is continuous at x=0, then the value of k is

If g(x)=xf(x), where f(x)={x sin((1)/(x));x!=00;x=0} then at x=0

If f(x)={[(cos x)^((1)/(sin x)),,x!=0],[K,,x=0]} is differentiable at x=0 Then K=

Prove that f(x)={x sin((1)/(x)),x!=0,0,x=0 is not differentiable at x=0

Examine the continuity of the function f(x) = {(|x-a| sin ((1)/(x-a))",","if " x ne a),(0",","if' x = a):} at x=a