Home
Class 12
MATHS
[" A straight line "x=y+2" touches the c...

[" A straight line "x=y+2" touches the circle "],[4(x^(2)+y^(2))=r^(2)." The value of "r" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line 3x + 4y = k touches the circle x^(2) + y^(2) = 16 x , then the values of k are

If the straight line 3x + 4y = k touches the circle x^2+y^2-10x = 0, then the value of k is:

If the straigth line y=mx+c touches the circle x^2+y^2-4y=0 ,then the value of c will be

Show that the straight line 3x + 4y = 20 touches the circle x ^2 + y ^2 = 16.

Prove that the straight line y = x + a sqrt(2) touches the circle x^(2) + y^(2) - a^(2)=0 Find the point of contact.

If the line y=sqrt(3)x+k touches the circle x^(2)+y^(2)=16, then find the value of k

The centre of the circle (x-a)^(2)+(y-3)^(2)=9 lies on the straight line x=y and the circle touches the circle x^(2)+y^(2)=1 externally.What are the values of alpha,beta?

The circle (x-r) ^(2) + (y-r) ^(2) =r ^(2) touches

If the straight line ax+by=2;a,b!=0 touches the circle x^(2)+y^(2)-2x=3 and is normal to the circle x^(2)+y^(2)-4y=6 ,then the values of 'a' and 'b'are?

If the line px+qy=1 touches the circle x^(2)+y^(2)=r^(2), prove that the point (p,q) lies on the circle x^(2)+y^(2)=r^(-2)