Home
Class 11
MATHS
[" If a bic are in "G" .P Then Show "],[...

[" If a bic are in "G" .P Then Show "],[" that "a(b^(2)+c^(2))=c(a^(2)+b^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c are in G.P. then show that b^(2 ) = a.c.

If a,b,c are in G.P then show that a(b^2-c^2)=c(a^2-b^2)

If a,b,c are in G.P then show that a(b^2+c^2)=c(a^2+b^2)

If a,b,c are in G.P., then show that : a(b^2+c^2)=c(a^2+b^2)

If a,b,c are in G.P., then show that a(b-c)^2=c(a-b)^2

If a,b,c are in G.P., then show that a(b-c)^2=c(a-b)^2

If a, b, c are in G.P. , then show that (i) (a^(2) - b^(2))(b^(2) + c^(2)) = (b^(2) -c^(2)) (a^(2) + b^(2)) (ii) a( b^(2) + c^(2)) = c (a^(2) + b^(2))

If a,b,c are in G.P., then show that : (a^2-b^2)(b^2+c^2)=(b^2-c^2)(a^2+b^2)

If a,b,c are in G.P., then show that : (a^2-b^2)(b^2+c^2)=(b^2-c^2)(a^2+b^2)

If a,b,c are in G.P then show that (a+2b+2c)(a-2b+2c)=a^2+4c^2