Home
Class 9
MATHS
If ((9)/(10))^(3) -(2/5)^(3)-(1/2)^(3)=(...

If `((9)/(10))^(3) -(2/5)^(3)-(1/2)^(3)=(x)/(50)`, find x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left(\frac{9}{10}\right)^{3} - \left(\frac{2}{5}\right)^{3} - \left(\frac{1}{2}\right)^{3} = \frac{x}{50}\), we will follow these steps: ### Step 1: Identify the values Let: - \( x = \frac{9}{10} \) - \( y = -\frac{2}{5} \) - \( z = -\frac{1}{2} \) ### Step 2: Check if \( x + y + z = 0 \) We need to verify if \( x + y + z = 0 \): \[ x + y + z = \frac{9}{10} - \frac{2}{5} - \frac{1}{2} \] To add these fractions, we need a common denominator. The least common multiple (LCM) of 10, 5, and 2 is 10. We can rewrite the fractions: - \( \frac{9}{10} \) remains the same. - \( -\frac{2}{5} = -\frac{4}{10} \) - \( -\frac{1}{2} = -\frac{5}{10} \) Now substituting these values: \[ x + y + z = \frac{9}{10} - \frac{4}{10} - \frac{5}{10} = \frac{9 - 4 - 5}{10} = \frac{0}{10} = 0 \] Thus, \( x + y + z = 0 \) holds true. ### Step 3: Apply the identity Using the identity for cubes: \[ x^3 + y^3 + z^3 - 3xyz = 0 \] We can rearrange it to find: \[ x^3 + y^3 + z^3 = 3xyz \] ### Step 4: Calculate \( x^3, y^3, z^3 \) Now we will calculate each cube: - \( x^3 = \left(\frac{9}{10}\right)^3 = \frac{729}{1000} \) - \( y^3 = \left(-\frac{2}{5}\right)^3 = -\frac{8}{125} = -\frac{64}{1000} \) (after converting to a common denominator) - \( z^3 = \left(-\frac{1}{2}\right)^3 = -\frac{1}{8} = -\frac{125}{1000} \) (after converting to a common denominator) Now substituting these values into the equation: \[ x^3 + y^3 + z^3 = \frac{729}{1000} - \frac{64}{1000} - \frac{125}{1000} \] Calculating the sum: \[ x^3 + y^3 + z^3 = \frac{729 - 64 - 125}{1000} = \frac{540}{1000} = \frac{27}{50} \] ### Step 5: Set equal to \( 3xyz \) Now we need to calculate \( 3xyz \): \[ xyz = \left(\frac{9}{10}\right) \left(-\frac{2}{5}\right) \left(-\frac{1}{2}\right) = \frac{9 \cdot 2 \cdot 1}{10 \cdot 5 \cdot 2} = \frac{18}{100} = \frac{9}{50} \] Thus, \[ 3xyz = 3 \cdot \frac{9}{50} = \frac{27}{50} \] ### Step 6: Equate and solve for \( x \) We have: \[ x^3 + y^3 + z^3 = 3xyz \implies \frac{27}{50} = \frac{x}{50} \] From this, we can find \( x \): \[ x = 27 \] ### Final Answer Thus, the value of \( x \) is \( 27 \). ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise Practice Test|8 Videos
  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise True & False|22 Videos
  • NUMBER SYSTEMS

    CBSE COMPLEMENTARY MATERIAL|Exercise Part - D|18 Videos
  • PRACTICE QUESTION PAPER-2

    CBSE COMPLEMENTARY MATERIAL|Exercise PART D|7 Videos

Similar Questions

Explore conceptually related problems

Which one of the following is not equal to ((100)/(9))^(-(3)/(2))?((9)/(100))^((3)/(2))( b) (1)/(( b) )(1)/(((100)/(9))^((3)/(2)))(3)/(10)x(3)/(10)x(3)/(10) (d) sqrt((100)/(9)x(100)/(9)x(100)/(9))

(5x)/(3)-(x-2)/(3)=(9)/(4)-(1)/(2)(x-(2x-1)/(3))

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

y=sqrt(((2x+3)^(5))/((3x-1)^(3)(5x-2))) Find dy/dx

(x-1)/(3)+(2x+5)/(6)=(3x-6)/(9)-(2x-5)/(2)

Simplify :((-3)/(2)x(4)/(5))+((9)/(5)x(-10)/(3))-((1)/(2)x(3)/(4))

CBSE COMPLEMENTARY MATERIAL-POLYNOMIALS-Part C
  1. Simplify (x+y+z)^(3)-(x-y-z)^(2).

    Text Solution

    |

  2. Factories 125x^(3)+8y^(3)+z^(3)-30xyz.

    Text Solution

    |

  3. x+2 is a factor of polynomial ax^(3)+bx^(2)+x-2 and the remainder 4 is...

    Text Solution

    |

  4. If the polynomials a x^3+4 x^2 + 3x -4 and x^3 - 4x + a leave the sam...

    Text Solution

    |

  5. If ((9)/(10))^(3) -(2/5)^(3)-(1/2)^(3)=(x)/(50), find x

    Text Solution

    |

  6. If (x-3) and (x-1/3) are factors of the polynomial px^(2)+3x+r, show t...

    Text Solution

    |

  7. Using identify, find the value of (-7)^(3)+(5)^(3)+(2)^(3).

    Text Solution

    |

  8. Find the dimensions of cube whose volume is given by the expression. 4...

    Text Solution

    |

  9. Given possible expression for the length and breadth of each of the fo...

    Text Solution

    |

  10. A literacy caompaign was organised by Class IX girl students under NSS...

    Text Solution

    |

  11. Under tree plantation programme students of Class IX planted total (3x...

    Text Solution

    |

  12. I f a+b+c=0,f i n d t h e v a l u e((b+c)^2)/(b c)+((c+a)^2)/(c a)+((a...

    Text Solution

    |

  13. Simplify: ((a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3)/((a-b^3+(b-c)^3+(c-a)^...

    Text Solution

    |

  14. .Factorise: (2a-b-c)^(3)+(2b-c-a)^(3)+(2c-a-b)^(3)

    Text Solution

    |

  15. If the polynomial 4x^(3)-16x^(2)+ax+7 is exactly divisible by x-1, the...

    Text Solution

    |

  16. If p,q & r are all non zero and p+q+r=0, prove that p^(2)/(qr)+(q^(2))...

    Text Solution

    |

  17. Factories 9x^(3)-27x^(2)-100x+300

    Text Solution

    |

  18. If (x+4) is a factor of the polynomial x^(3)-x^(2)-14x+24, find the ot...

    Text Solution

    |

  19. x/y+y/x=-1( w h e r e ,x , y!=0) then find the value of x^3-y^3

    Text Solution

    |

  20. (155xx155+155xx55+55xx55)/(155xx155xx155-55xx55xx55)

    Text Solution

    |