Home
Class 9
MATHS
In triangle ABC , if angle A = 55^(@), a...

In `triangle ABC` , if `angle A = 55^(@), angle B = 75^(@)` then find out the smallest and longest side of the triangle .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the smallest and longest sides of triangle ABC given the angles A and B. ### Step-by-Step Solution: 1. **Identify the Given Angles:** - We have angle A = 55° and angle B = 75°. 2. **Calculate Angle C:** - We know that the sum of the angles in a triangle is 180°. - Therefore, angle C can be calculated as: \[ \text{Angle C} = 180° - \text{Angle A} - \text{Angle B} \] - Substituting the known values: \[ \text{Angle C} = 180° - 55° - 75° = 180° - 130° = 50° \] 3. **List the Angles:** - Now we have: - Angle A = 55° - Angle B = 75° - Angle C = 50° 4. **Determine the Smallest and Longest Angles:** - The smallest angle is angle C (50°). - The longest angle is angle B (75°). 5. **Identify the Sides Opposite to the Angles:** - The side opposite the smallest angle (Angle C) is side AB. - The side opposite the longest angle (Angle B) is side AC. 6. **Conclusion:** - Therefore, the smallest side of triangle ABC is **AB**. - The longest side of triangle ABC is **AC**. ### Final Answer: - Smallest side: **AB** - Longest side: **AC**
Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PART-C|12 Videos
  • TRIANGLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PART-D|15 Videos
  • TRIANGLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PART-A (State which of the following statements are true and false )|5 Videos
  • SURFACE AREAS AND VOLUMES

    CBSE COMPLEMENTARY MATERIAL|Exercise Practice Test|8 Videos

Similar Questions

Explore conceptually related problems

If in a Delta ABC, angle A = 45^(@) , angle B = 75^(@), then

In triangle FAN, angle F= 80 ^@ , angle A=40^@ . Find out the greatest and the smallest side of the triangle. State the reason.

In ABC, if /_A=40^(@) and /_B=60^(@) . Determine the longest and shortest sides of the triangle.

triangleSUN, angleS=85^@, angleU=45^(@) greatest and the smallest side of the triangle.

In Delta ABC , if angle A = 30^(@), angle B = 60^(@) , then the ratio of sides is____________.

In triangle XYZ, angle X=65^@ , angleY=75^@ then find angle Z .

In a Delta ABC, angle A=90^(@), angle B=30^(@) find the ratio of sides .

In a Delta ABC angle C = 60^(@) angle B = 90^(@) find the ratio of sides

In /_ABC, if /_A=36^(@) and /_B=64^(@) name the longest and shortest sides of the triangle.