Home
Class 9
MATHS
In a triangle ABC, If AB = AC and angle...

In a `triangle ABC`, If AB = AC and `angle A = 70` Find `angle B and angle C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow these instructions: ### Step 1: Understand the Given Information We have a triangle ABC where: - AB = AC (the triangle is isosceles) - Angle A = 70 degrees ### Step 2: Draw the Triangle Draw triangle ABC with the following properties: - Mark points A, B, and C. - Label sides AB and AC as equal. - Label angle A as 70 degrees. ### Step 3: Use the Isosceles Triangle Property Since AB = AC, the angles opposite these sides (angle B and angle C) must be equal. Therefore: - Angle B = Angle C ### Step 4: Apply the Angle Sum Property of a Triangle The sum of the angles in any triangle is always 180 degrees. Therefore, we can write the equation: \[ \text{Angle A} + \text{Angle B} + \text{Angle C} = 180^\circ \] Substituting the known values: \[ 70^\circ + \text{Angle B} + \text{Angle C} = 180^\circ \] ### Step 5: Substitute Angle B for Angle C Since Angle B = Angle C, we can replace Angle C with Angle B in our equation: \[ 70^\circ + \text{Angle B} + \text{Angle B} = 180^\circ \] This simplifies to: \[ 70^\circ + 2 \cdot \text{Angle B} = 180^\circ \] ### Step 6: Solve for Angle B Now, isolate Angle B: \[ 2 \cdot \text{Angle B} = 180^\circ - 70^\circ \] \[ 2 \cdot \text{Angle B} = 110^\circ \] Dividing both sides by 2 gives: \[ \text{Angle B} = \frac{110^\circ}{2} = 55^\circ \] ### Step 7: Find Angle C Since Angle B = Angle C, we have: \[ \text{Angle C} = 55^\circ \] ### Conclusion Thus, the angles in triangle ABC are: - Angle B = 55 degrees - Angle C = 55 degrees ### Final Answer - Angle B = 55 degrees - Angle C = 55 degrees ---
Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PART-D|15 Videos
  • SURFACE AREAS AND VOLUMES

    CBSE COMPLEMENTARY MATERIAL|Exercise Practice Test|8 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC ,AB = AC, and angle BAC is 50^@ . Then angle ABC and angle BCA are, respectively: एक त्रिभुज triangle ABC , में AB = AC और angle BAC=50^@ तो angle ABC और angle BCA का मान ज्ञात कीजिये

If triangle ABC is an isosceles triangle with AB = AC and angle ABC is 65^@ , then angle BCA and angle BAC are, respectively यदि triangle ABC , AB = AC और angle ABC= 65^@ के साथ एक समद्विबाहु त्रिभुज है, तो क्रमशः angle BCA और angle BAC है:

In triangle ABC , AB = AC , angle B = 40 ^(@) Then angle C is equal to

In the triangle, if AB=AC and angle ABC = 72^@ , then angle BAC is: एक त्रिभुज में, यदि AB=AC तथा angle ABC = 72^@ है, तो कोण BAC का मान क्या होगा ?