Home
Class 12
MATHS
F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,...

`F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]]` and `G(x)=[[cosx,0,sinx],[0,1,0],[-sinx,0,cosx]]`, then `[F(x)G(y)]^(-1)` is equal to (A) `F(-x)G(-y)` (B) `F(x-1)G(y-1)` (C) `G(-y)F(-x)` (D) `G(y^(-1))F(x^(-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] Find f(-x)

If F(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)] and G(x)=[(cosx,0,sinx),(0,1,0),(-sinx,0,cosx)] then [F(x)G(x)]^(-1) =

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

If F(x) = [(cos x, - sin x, 0),(sin x, cos x, 0),(0,0,1)] and G(y) = [(cos y, 0, sin y),(0,1,0),(-sin y, 0, cos y)] then [F(x) G(y)]^(-1) is equal to a) F (-x) G(-y) b) G(-y) F(-x) c) F(x^(-1))G(y^(-1)) d) G(y^(-1))F(x^(-1))

If F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] Show that F(x)F(y)=F(x+y)