Home
Class 10
MATHS
If (by+cz)/(b^2 + c^2) = (cz + ax)/(c^2 ...

If `(by+cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)` then prove that each ratio is equal to `x/a = y/b = z/c`.

Text Solution

Verified by Experts

We are given,
`(by+cz)/(b^2+c^2)=(cz+ax)/(c^2+a^2)=(ax+by)/(a^2+b^2)->Eq(1)`
Also,`a/b=c/d=e/f`, can be written as `(a+c+e)/(b+d+f)` So, Eq(1) becomes
`(by+cz)/(b^2+c^2)=(cz+ax)/(c^2+a^2)=(ax+by)/(a^2+b^2)=(ax+by+cz)/(a^2+b^2+c^2)`
Taking,
`(by+cz)/(b^2+c^2)=(ax+by+cz)/(a^2+b^2+c^2)`
`=>(by+cz)(a^2+b^2+c^2))=(ax+by+cz)(b^2+c^2)`
`=>a^2(by+cz)+(b^2+c^2)(by+cz) = ax(b^2+c^2)+(b^2+c^2)(by+cz)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If (by+cz)/(b^2+c^2)=(cz+ax)/(c^2+a^2)=(ax+by)/(a^2+b^2) then prove that x/y=y/b=z/c

If x^(2) : (by + cz) =y^(2) : (cz + ax) = z^(2) : (ax + by) = 1 , then show that a/(a+x) + b/(b+y) + c/(c+z) = 1 .

If (a^(2)+b^(2)+c^(2))(x^(2)+y^(2)+z^(2))=(ax+by+cz)^(2), then show that x:a=y:b=z:c

If (b + c) (y + z) - ax = b - c, (c + a) (z + x) - by = c - a and (a + b) (x + y) - cz = a - b , where a + b + c ne 0, then x is equal to a) (c + b)/(a + b + c) b) (c - b)/(a + b + c) c) (a - b)/(a + b + c) d) (a + b)/(a + b + c)

If a^2+b^2+c^2 =16, x^2+y^2+z^2 = 25 and ax+by+cz = 20 , then show that (a+b+c) prop (x+y+z)

If (x)/(b-c)=(y)/(c-a)=(z)/(a-b), prove that ax+by+cz=0