Home
Class 12
MATHS
Prove that cos^(-1){(1+x)/2}=(cos^(-1)x)...

Prove that `cos^(-1){(1+x)/2}=(cos^(-1)x)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1){sqrt((1+x)/2)}=(cos^(-1)x)/2,-1ltxlt1

Prove that cos^(-1){sqrt((1+x)/2)}=(cos^(-1)x)/2

If |x|<=1 then prove that cos^(-1)(-x)=pi-cos^(-1)x

Prove that cos^(-1)(x)+ cos^(-1){(x)/(2)+sqrt(3-3x^(2))/(2)}=(pi)/(3) .

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Prove that cos^(-1)(3x-4x^3)=3cos^(-1)x,x in[1/2,1]

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1