Home
Class 12
MATHS
Find the points of minima for f(x)=int0^...

Find the points of minima for `f(x)=int_0^x t(t-1)(t-2)dt`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the points of maxima of x^(2)f(x)=int_(0)^(x^(2))(t^(2)-t)/(e^(t)+1)dt

The point of extremum of f(x)=int_(0)^(x)(t-2)^(2)(t-1)dt is a

The number of critical points of the function f(x)=int_(0)^(x)e^(t)(t-1)(t-2)(t-3)dt

Find the intervals in which f(x) = int_(0)^(x){e^(t) - 1)(t+1)(t-2)(t+4) . dt increases and decreases. Also find the points of local maxima and local minima of (x).

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt