Home
Class 12
MATHS
If f(x) is monotonic differentiable fun...

If `f(x)` is monotonic differentiable function on `[a , b]` , then `int_a^bf(x)dx+int_(f(a))^(f(b))f^(-1)(x)dx=` (a)`bf(a)-af(b)` (b) `bf(b)-af(a)` (c)`f(a)+f(b)` (d) cannot be found

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is monotonic differentiable function on [a,b], then int_(a)^(b)f(x)dx+int_(f(a))^(f(b))f^(-1)(x)dx=(a)bf(a)-af(b)(b) bf (b)-af(a)(c)f(a)+f(b)(d) cannot be found

int_(a)^(b)f(x)dx=int_(b)^(a)f(x)dx .

int_a^b[d/dx(f(x))]dx

Property 4: If f(x) is a comtinuous function on [a;b] then int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

If |int_(a)^(b)f(x)dx|=int_(a)^(b)|f(x)|dx,a

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx